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Abstract. There is a variety of approaches available to model the large strain
behavior of shells in dynamic analysis. This article examines the significance of
the iterative shell thickness update for the 4-node degenerated shell element with
Reissner-Mindlin assumptions. The updated Lagrangian formulation in explicit
and implicit dynamic integration schemes is described. The rigid link correction
is employed to reduce the warp of the element. Numerical examples including
dynamic analysis of fixed beam and pinched cylinder are presented. The results
show that significance of the thickness update occur for the large strains.
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1 Introduction

Dynamic finite element analysis is widely used to investigate the response of the
structure under the desirable load and boundary conditions. If the dimensions of the
structure are significantly small in one direction compared with others, the shell ele-
ments are convenient in finite element model simulation. Shell elements are classified
into three main groups: the curved shell elements based on classical shell theories,
degenerated shell elements and flat shell elements combining properties of membrane
and bending plate [6]. The 4-node degenerated shell element is considered in this paper.

If large strain behavior is simulated, the change in shell thickness should be con-
sidered. Three different approaches applied to model the large strain behavior of shells
are discussed in [9]. The simplest and the most cost-efficient approach is to update the
thickness iteratively. The element thickness is updated to ensure the incompressible
behavior for the thin basic shell triangles in [7] using this approach. The same update
scheme is applied for the thick 4-node shell element in this paper. Other approaches
presented in [4] consist of using solid elements or three dimensional higher order shell
elements with at least 7 parameters. However, evaluation of additional parameters
increase computational cost of the model.

The aim of this paper is to examine the significance of the iterative shell thickness
update in dynamic behavior. Damping effects are not considered in the research.
Firstly, the 4-node degenerated shell element with the rigid link correction and trans-
formation from global to local system in case of the warped element is described.
Secondly, the updated Lagrangian formulation with explicit and implicit integration
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schemes is presented. Finally, the numerical examples including beam with fixed ends
and pinched cylinder with rigid diaphragms at the ends are proposed to illustrate the
effects of thickness update.

2 4-Node Degenerated Shell Element

Degenerated shell element was derived from the solid element by defining all dis-
placements (translational and rotational) with respect to the mid-surface [8]. Any shell
element is defined by material properties, mid-surface normals at each node, geometry
and thickness of the element [12]. Shear strains cyz, czx are considered to be not equal to
zero for the thick shell with Reissner-Mindlin assumptions. Reissner-Mindlin theory
states that a straight line normal to the undeformed middle surface remains straight but
not necessarily orthogonal to the middle plane after deformation [8]. Shear correction
factor j ¼ 5=6 is employed to compensate the error due to the assumption of constant
shear strains within plate thickness although the shear stresses ryz, rzx are quadratic
functions of thickness coordinate [11].

A 2 × 2 Gauss integration rule is employed to obtain stiffness matrix and internal
force vector for the 4 node element in plane. Reduced through-thickness integration is
used to avoid shear locking.

2.1 Transformation to Local Coordinates

Local coordinate system is calculated with respect to the mean plane of the element.
Means plane passes through all mid-side points of the element (12, 23, 34, 41 in Fig. 1)
[6] and is defined by a normal vector and a point through which it passes [13]. If all
nodes of the elements are located in one plane, the mean plane coincides with the
element. Vectors V12;34 connecting mid-side points 12 and 34 and V41;23 connecting
mid-side points 41 and 23 are defined to calculate vector V3 normal to the mean plane:

V3 ¼ V41;23 � V12;34: ð1Þ

V1 is perpendicular to V3 and parallel to V41;23. The third vector V2 employed to
define local coordinate system is calculated as follows:

V2 ¼ V3 � V1: ð2Þ

Local axes x, y, z in the global system correspond to normalized orthogonal vectors
V1, V2, V3 at the center of the mean plane of element [13] and are used to transform
variables between local and global axes [12].

2.2 Shell Formulation

Any point of shell element can be defined by nodal coordinates, shell thickness h and a
normalized vector v3k connecting upper and lower surfaces at the kth node:
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where the shape function Nkðn; gÞ is a bi-linear Lagrangian polynomial of the kth node
and f is a linear coordinate in the thickness direction.

The displacements at each node of shell are uniquely defined by three translational
displacements u, v, w and two rotations hx, hy about the vectors v1k and v2k orthogonal
to vector v3k . The drilling degree of freedom hz (rotation about the z axis) is added to
apply a unified procedure for the transformation of translational and rotational dis-
placements from local to global coordinate system [12]. This degree of freedom con-
strained in the global system. Displacements at any point of the element are calculated
according the formula:
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where g1k ¼ � h
2 v2k, g2k ¼ h

2 v1k [1].

2.3 Rigid Link Correction for the Warped Shell Element

The initial mesh of the analyzed structure consists of flat 4-node shell elements. The
stiffness matrix K is calculated with the assumption that all four nodes of the element
are in the same plane. However, if the initial structure assembled of elements is curved,

Fig. 1. Global and local coordinates of the warped shell element.
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the initial geometry of element is often warped. Moreover, if out-of-plane loads of the
different magnitude are applied on the nodes of the element during the simulation, the
element warps and the flat element assumption is not satisfied in later calculations. The
rigid link correction is applied to the stiffness matrix of the warped element before the
transformation to the global coordinate system [6]:

Klocal ¼ WKflatWT; ð5Þ

where W is a projection matrix to the mid-plane of the element consisting four diag-
onally located blocks Wk , k ¼ 1; 4:

Wk ¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
dk 0 0 1 0 0
0 dk 0 0 1 0
0 0 0 0 0 1

2
6666664

3
7777775

ð6Þ

and dk is the offset of the kth node with respect to the mid-plane.

3 Updated Lagrangian Formulation in FEM Dynamic
Analysis

Updated Lagrangian formulation relates 2nd Piola-Kirchhoff stress to Green-Lagrange
strain referred to the configuration at time t [1]. Explicit and implicit integration
techniques can be employed to get the response of structure at time t. The central
difference scheme employed in explicit analysis has a low computational cost but is
only conditionally stable and requires a small time step in nonlinear analysis when
large deformations are considered. On the contrary, a composite implicit two-substep
time integration scheme proposed in [2, 3] is stable in both linear and nonlinear
analysis.

A superscript on the left of the variable indicates the configuration the quantity
occurs and the subscript on the left indicates the reference configuration [1]. It is
assumed that all variables are known at time t and the variables at time t þ Dt are
computed. All variables but mass matrix are evaluated at the last known configuration
at time t [2, 3]. The diagonal mass matrix M is calculated once with respect to the
initial configuration. Mass matrix for the 4-node shell element consists of 4 diagonally
located blocks Mk , k ¼ 1; 4 [10]:

Mk ¼ muI3�3 0
0 mhI3�3

� �
; mu ¼ qAh

4
; mh ¼ h2

12
mu; ð7Þ

where I3�3 is a 3 × 3 identity matrix, q is the density of the material, A is the area of the
element, h is the thickness of the element.
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The shell thickness tþDth is updated at each iteration for the implicit dynamic
analysis and each time step for the explicit analysis [7]:

tþDth ¼
tAth
tþDtA

; ð8Þ

where A is the area of the element.

3.1 Explicit Analysis

The equations of the motion solved in explicit analysis at time t þ Dt in the matrix form
are:

M �tþDt €U ¼tþDt R�tþDt F; ð9Þ

where M - mass matrix at the initial configuration, tþDt €U - vector of accelerations,
tþDtR - vector of external forces, tþDtF - vector of internal forces.The vector of internal
forces tþDt

tþDtF is evaluated using the formula:

tþDt
tþDtF ¼

Z
tþDtV

tþDt
tþDtB

T
L � tþDtStþDtdV ; ð10Þ

where BL is strain – displacement matrix, such that e ¼ BLU where e is
Green-Lagrange strain vector, ST ¼ sxx syy szz sxy syz szx½ � is a 2nd
Piola-Kirchhoff stress vector at time t þ Dt [1]. Displacements at the time t þ Dt are
explicitly computed using central difference formula with constant time step Dt [5]:

tþDtU ¼ Dt2 �M�1 � ðtþDtR� tþDtFÞ þ 2 � tU� t�DtU: ð11Þ

3.2 Implicit Integration Scheme

The equation of the motion solved in implicit integration scheme for the Updated
Lagrangian formulation is:

t
tK

ði�1Þ � DUðiÞ ¼ tþDtR� tþDt
tþDtF

ði�1Þ �M � tþDt €U
ðiÞ
; ð12Þ

whereM - mass matrix at the initial configuration, tþDt €U - vector of acceleration, tþDtR -
vector of external forces, tþDtF - vector of internal forces. Superscript on the right
indicates the iteration the variable was obtained.

Stiffness matrix K is a sum of linear and nonlinear matrices [1]:
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where D is elasticity tensor for isotropic material, S ¼
sxxI3 sxyI3 sxzI3
sxyI3 syyI3 syzI3
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2
4

3
5,

srs are the components of a 2nd Piola-Kirchhoff stress, I3 is 3 × 3 identity matrix, BNL

part for the kth node has the form:
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75: ð14Þ

The time step is divided to two equal substeps and the Newton-Raphson iterative
scheme is employed to correct the solutions at each substep until the convergence is
reached. Stiffness matrix K and internal force vector F are calculated at each iteration
with respect to the corrected displacements. The trapezoidal rule is used to compute the
solution in the 1st substep [3]:

16
Dt2

Mþ tþDt=2Kði�1Þ
� �

DUðiÞ ¼

tþDt=2R� tþDt=2Fði�1Þ �M
16
Dt2

tþDt=2Uði�1Þ � tU
� 	

� 8
Dt

t _U� t €UÞ;
� ð15Þ

where DUðiÞ is the correction of displacements in the ith Newton-Raphson iteration of
the 1st substep:

tþDt=2UðiÞ ¼ tþDt=2Uði�1Þ þ DUðiÞ: ð16Þ

The velocities and accelerations at the time t þ Dt=2 are computed according the
formulas [2]:

tþDt=2 _U ¼ tþDt=2U� tU
� 	 4

Dt
� t _U; ð17Þ

tþDt=2 €U ¼ tþDt=2U� tU� Dt
2

t _U
� �

16
Dt2

� t €U: ð18Þ

The three-point Euler backward method is employed in the 2nd substep with
governing equations [3]:
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where DUðiÞ is the correction of displacements in the ith Newton-Raphson iteration of
the 2nd substep:

tUðiÞ ¼ tUði�1Þ þ DUðiÞ: ð20Þ

The velocities and accelerations at the time t þ Dt are updated using formulas [3]:

tþDt _U ¼ 1
Dt

tU� 4
Dt

tþDt=2Uþ 3
Dt

tþDtU; ð21Þ

tþDt €U ¼ 1
Dt

t _U� 4
Dt

tþDt=2 _Uþ 3
Dt

tþDt _U: ð22Þ

4 Numerical Examples

The linearly increasing force with increment DP in time step Dt is applied for three
structures with different geometry and boundary conditions. Central difference and
Bathe integration schemes are employed for all examples to get a dynamic response on
the applied loads. An isotropic material with parameters in Table 1 is used in calcu-
lations. The initial thickness of the shell element h ¼ 0:1m in all examples.

Conditional parameter uTH determines whether the thickness is updated during the
calculations.

4.1 Tensioned Beam

A beam is loaded at the ends with linearly increasing force P (Fig. 2). The highlighted
part of the beam in Fig. 2(a) is simulated using finite element method with the sym-
metry conditions applied for the thick lines in Fig. 2(b). The geometry of the beam:
a ¼ 0:2m, L ¼ 1m.

As the in-plane load is applied, all elements become thinner in the deformed con-
figuration during dynamic analysis (Fig. 3). The thickness of the elements near the end is
reduced earlier than the thickness of the elements in the center due to the load type.

Table 1. Material parameters.

Young’s modulus, N/m2 75·109

Poisson’s ratio 0.32
Mass density, kg/m3 2700
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If the thickness update is applied, the x displacements at the end of the beam reach
higher values compared with the displacements computed otherwise (Fig. 4). This is
caused by the fact that the deformed beam becomes thinner and weaker than the beam
with constant thickness.

Fig. 2. (a) Initial geometry and loads. (b) Finite element mesh for 1/4 of the beam.

Fig. 3. Shell thickness at time t ¼ 2 � 10�4 s: (a) central difference scheme (Dt ¼ 10�5 s,
DP ¼ 106 N), (b) Bathe scheme (Dt ¼ 2 � 10�5 s, DP ¼ 2 � 106 N).
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Fig. 4. x displacement at the end of the beam. Parameter uTH ¼ 0 if shell thickness is not
updated and uTH ¼ 1 if shell thickness is updated, CD – central difference scheme.
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4.2 Fixed Beam with Central Load

A beam is loaded in the center with linearly increasing force P. All degrees of freedom
are constrained at both ends of the beam (dash lines in Fig. 5(a)). The highlighted part
of the beam in Fig. 5(a) is simulated using finite element method with the symmetry
conditions applied for the thick lines in Fig. 5(b). The geometry of the beam:
a ¼ 0:2m, L ¼ 1m.

The shell thickness is reduced for the elements near the loaded and constrained
nodes (Fig. 6). Under this type of load the behavior of the structure is mainly governed
by the rotational displacements without significantly affecting the area of element. The
vertical displacements computed with the updated thickness have minor differences
compared with the displacements computed otherwise (Fig. 7).

If long-time durations are considered with increasing forces, the central difference
scheme becomes unstable (Fig. 7). The reduced time step should be employed to
maintain stability of the scheme. However, the reduction of time step increases com-
putational cost and is not desirable.

4.3 Pinched Cylinder with End Diaphragms

A cylindrical shell is pinched by two opposite forces applied at the middle section. The
cylinder is closed at both ends by rigid diaphragms which constrain translations in X

Fig. 5. (a) Initial geometry and loads. (b) Finite element mesh for 1/4 of the beam.

Fig. 6. Shell thickness at time t ¼ 10�3 s: (a) central difference scheme (Dt ¼ 10�5 s,
DP ¼ 5 � 105 N), (b) Bathe scheme (Dt ¼ 2 � 10�5 s, DP ¼ 106 N).
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and Y directions and rotations about the X axis at the edges. This test involves inex-
tensional bending and complex membrane states of stress [13]. For example, the ele-
ments near the pinched node undergo warping effects. As the symmetric load is
applied, only the highlighted part of the cylinder (Fig. 8(a)) is simulated using finite
element method with linearly increasing force P and appropriate symmetry conditions
applied for the thick lines in Fig. 8(b). The geometry of the cylinder: r ¼ 1m, L ¼ 1m.

The shell thickness is thinner than the initial thickness for the elements near the
pinched node and thickens farther from the pinched zone (Fig. 9). The thickness at the
sides of the cylinder are not affected significantly. The shell thickness computed using
Bathe implicit integration scheme varies in a wider range compared to the thickness
computed using central difference scheme under the same load and boundary conditions.

If the thickness update is applied, the deflections at the pinched node are smaller
compared with the deflections computed otherwise (Fig. 10). However, these differ-
ences are not significant as there are no evident boundaries between the displacement
curves computed with constant and updated thickness assumptions in the analyzed
period under the considered boundary and load conditions.

Fig. 8. (a) Initial geometry and loads. (b) Finite element mesh for 1/8 of the cylinder.
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Fig. 7. z displacement at the center of the beam. Parameter uTH ¼ 0 if shell thickness is not
updated and uTH ¼ 1 if shell thickness is updated, CD – central difference scheme.
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5 Conclusions

The objective of this paper was to focus on the shell thickness update in the dynamic
analysis with the updated Lagrangian formulation. Explicit central difference and
implicit Bathe time integration schemes were implemented to compare the response of
the structure. Although the time step used in numerical examples for the Bathe implicit
analysis was twice the time step used in explicit analysis, the implicit Bathe time
integration scheme has considerably higher computational cost. This is caused by the
fact that the stiffness matrix and internal force vector of the structure are reassembled at
each iteration. However, this scheme is stable when the central difference scheme fails
as in the example for the vertically loaded beam with the fixed ends.

If the thickness of the element is updated, the changes in geometry of the structure
are taken into consideration. For the examples with out-of-plane loads, the behavior is
governed by rotational displacements and the changes in element area and therefore
thickness are minor. If element undergoes large deformations, the stiffness of the
element is updated by reducing its thickness and the displacements reach higher values.

Fig. 9. Shell thickness at time t ¼ 2 � 10�3 s: (a) central difference scheme (Dt ¼ 10�5 s,
DP ¼ 2 � 105 N), (b) Bathe scheme (Dt ¼ 2 � 10�5 s, DP ¼ 4 � 105 N).
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Fig. 10. z displacement at the pinched node. Parameter uTH ¼ 0 if shell thickness is not updated
and uTH ¼ 1 if shell thickness is updated, CD – central difference scheme.

602 D. Calneryte and R. Barauskas



References

1. Bathe, K.J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)
2. Bathe, K.J., Baig, M.M.I.: On a composite implicit time integration procedure for nonlinear

dynamics. Comput. Struct. 83, 2513–2524 (2005)
3. Bathe, K.J.: Conserving energy and momentum in nonlinear dynamics: a simple implicit

time integration scheme. Comput. Struct. 85, 437–445 (2007)
4. Echter, R., Oesterle, B., Bischoff, M.: A hierarchic family of isogeometric shell finite

elements. Comput. Methods Appl. Mech. Eng. 254, 170–180 (2013)
5. Miller, K., Joldes, G., Lance, D., Wittek, A.: Total Lagrangian explicit dynamics finite

element algorithm for computing soft tissue deformation. Commun. Numer. Meth. Eng. 23,
121–134 (2007)

6. Nguyen-Van, H., Mai-Duy, N., Tran-Cong, T.: An improved quadrilateral flat element with
drilling degrees of freedom for shell structural analysis. CMES-Comp. Model. Eng. 49(2),
81–110 (2009)

7. Oñate, E., Cendoya, P., Miquel, J.: Non-linear explicit dynamic analysis of shells using the
BST rotation free triangle. Eng. Comput. 19, 662–706 (2002)

8. Oñate, E.: Structural Analysis with the Finite Element Method. Linear Statics. Volume 2.
Beams, Plates and Shells. Lecture Notes on Numerical Methods in Engineering and
Sciences. Springer, Berlin (2013)

9. Sussman, T., Bathe, K.J.: 3D-shell elements for structures in large strains. Comput. Struct.
122, 2–12 (2013)

10. Tabiei, A., Tanov, R.: Sandwich shell finite element for dynamic explicit analysis. Int.
J. Numer. Meth. Eng. 54, 763–787 (2002)

11. Voyiadjis, G.Z., Woelke, P.: Elasto-Plastic and Damage Analysis of Plates and Shells.
Springer, Berlin (2008)

12. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural
Mechanics. Elsevier, Amsterdam (2005)

13. Wisniewski, K.: Finite Rotation Shells. Basic Equations and Finite Elements for Reissner
Kinematics. Lecture Notes on Numerical Methods in Engineering and Sciences. Springer,
Berlin (2010)

Dynamic Analysis of 4-Node Degenerated Shell Element 603


	Dynamic Analysis of 4-Node Degenerated Shell Element with Updated Thickness
	Abstract
	1 Introduction
	2 4-Node Degenerated Shell Element
	2.1 Transformation to Local Coordinates
	2.2 Shell Formulation
	2.3 Rigid Link Correction for the Warped Shell Element

	3 Updated Lagrangian Formulation in FEM Dynamic Analysis
	3.1 Explicit Analysis
	3.2 Implicit Integration Scheme

	4 Numerical Examples
	4.1 Tensioned Beam
	4.2 Fixed Beam with Central Load
	4.3 Pinched Cylinder with End Diaphragms

	5 Conclusions
	References


